Error estimate for a homogenization problem involving the Laplace–Beltrami operator
نویسندگان
چکیده
منابع مشابه
Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator
By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf
متن کاملError estimate and unfolding for periodic homogenization
This paper deals with the error estimate in problems of periodic homogenization. The methods used are those of the periodic unfolding. We give the upper bound of the distance between the unfolded gradient of a function belonging to H(Ω) and the space ∇xH(Ω)⊕∇yL(Ω;H per(Y )). These distances are obtained thanks to a technical result presented in Theorem 2.3 : the periodic defect of a harmonic fu...
متن کاملInterior error estimate for periodic homogenization
In a previous article about the homogenization of the classical problem of diffusion in a bounded domain with sufficiently smooth boundary we proved that the error is of order ε. Now, for an open set Ω with sufficiently smooth boundary (C) and homogeneous Dirichlet or Neuman limits conditions we show that in any open set strongly included in Ω the error is of order ε. If the open set Ω⊂R is of ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA nonlinear boundary problem involving the p-bilaplacian operator
∆p := ∆(|∆u|p−2∆u) is the operator of fourth order, so-called the p-biharmonic (or p-bilaplacian) operator. For p = 2, the linear operator ∆2 = ∆2 = ∆ · ∆ is the iterated Laplacian that to a multiplicative positive constant appears often in the equations of Navier-Stokes as being a viscosity coefficient, and its reciprocal operator noted (∆2)−1 is the celebrated Green’s operator (see [8]). Exis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics and Mechanics of Complex Systems
سال: 2018
ISSN: 2325-3444,2326-7186
DOI: 10.2140/memocs.2018.6.41